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A Deterministic Vortex Method for the Navier-Stokes Equations

GiovanNl Russo

Department of Mathematics, University of L' Aguita, L Aquita, Haly

Reccived March 19, 1990; revised May 8, 1992

A new deterministic particle method is presented for treating the dif-
fusion term in the vorticity formutation of the Navier-Stokes equations.
It is based on the discrete approximation of the Laplacian on an
irregular grid. The particles are convected according to the velocity field
and their weight evolves according to the diffusion. The general proper-
ties of the method are analyzed. The method has bean implemented in
two dimensions in the case of an unbounded domain. The results of
the method are studied numerically by compatison with an exact
solution. 1€ 1893 Academic Prass, Inc.

1. INTRODUCTION

The vorticity formulation of the incompressible Euler
equations has been extensively studied [ 11, 5,27, 3, 8]. This
formulation has the advantage that the pressure does not
appear explicitly and neced not be computed in order to
describe the fluid motion. The evolution of the Muid is
described in a Lagrangian form, in terms of the cquations
of motion of fluid particles. The initial vorticity is
approximated by a sct of ¥ point vortices and the velocity
of each vortex is computed as a function of the position and
strength of the other vortices. This leads to a system of N
ordinary differential equations (the point-vortex method).
For theoretical and computational purposes the point
vortices are often regularized by convolving them with a
smooth funclion (the vortex-blob method [10, 3]). This
procedure gives better aumerical results and convergence
properties than the point-vortex method [21, 16].

A natural way of introducing the cffect of diffusion in this
formulation is the addition of a Wicner process o Lhe
motion of each vortex. This random vortex method was first
introduced by Chorin [10]. Its propertics have been
extensively studicd in the literature [26, 207, The method
is simple, easy to implement, and can be used with com-
plicated geometries. Boundary conditions can be imposed
by creating the proper amount of vorticity at the wall.
Recent developments and improvements of the method are
discussed in [9, 25].

This method suflers, however, from several drawbacks.
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The accuracy is very poor because of the random fluctua-
tions and the error usually decreases as I/ﬂ. There are
cases in which the results are poor even for large N. This
happens, for example, when there is a strong cancellation
between vortices of opposite signs. In that case the net signal
can be much smaller than the noise due to the fluctuations!

For these reasons it is desirable to have a deterministic
wity of treating the dilfusion term in the Navier Stokes
cquations, maintaining the advantages of a vorticity for-
mulation, Some of the previous attempts were unsuccessiul,
as was pointed out in [22], An interesting formulation is the
Sractional step method proposed by Cottet er af. [15,17].
The evolution of the system in a time interval 41 is obtained
in two steps. In the first step the velocity of the vortices is
reconstructed via a vortex-blob method and the particles are
advected according to their velocity. In the second step each

point vortex is spread into a gaussian of size ./2v Ar. The
vorticity is now a smooth function which is then
approximated in terms of §-functions centered at the same
point locations, by adjusting the strength of the vortices.
This procedure leads to a consistent method. In a
subsequent paper the same author treats the problem of the
boundary conditions [137.

Another approach has been considered in [ 18]. A vortex-
blob method is used and the contribution of the diffusion
is obtained by differentiating the cur-off fiunction and
approximating the diffusion term as a sum of é-functions, by
means of a quadrature formula. The method is consistent
and the stability has been proven for the heat equation,
provided the cutofl function has a positive Fourier trans-
form. The rate of convergence depends on the choice of the
cutoll function.

In this paper we use a dilferent approach, which is based
on a discrete approximation of differential operators on an
irrcgular grid. The partictes arc advected with the fluid
velocity. The diffusion equation lor the vorticity is solved on
the grid formed by the particles. The method is based on the
discrete approximation of a Laplacian on an irregular grid
and can be generalized to three dimensions. '

We remark here that this is a free Lagrangian method,
and therefore it is adaptive. This is an advantage for the
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long-time behavior. With the vsual Lagrangian schemes a
regridding is required after a certain time [ 3, 14].

The plan of the paper is the following: in the next section
we review the vorticity formulation of the Navier-Stokes
equations and we deduce the evolution equations for vortex
strengths and positions for the numerical method; the third
section describes the implementation of this method using
the Voronoi diagram for computing the discrete operators
on an irregular grid; the fourth section describes the general
properties of the method; the fifth section shows numerical
results; finally, in the last section we draw some conclusions.

2. DERIVATION OF THE METHOD

In this section we review the vorticity formulation of the
Navier-Stokes equation in two and three dimensions. Let us
consider first the two-dimensional case. The equation for
the vorticity in two dimensions is given by

a—w+(ll-V)m=~.rAw,

y (1)

where u={u,, u,) is the fluid velocity ficid and w =06 u, —
¢, uy is the vorticity. The velocity field can be reconstructed
in terms of the vorticity

u=JK(x—x')w(x', 1) dx’, )

11 /—y
K=——— .
2n IX|2( x )
We shall consider a “particle approximation™ of the
solution a distribution of the form

where

N
w™ = Z I'd(x —x,),

i=1

(3)

which represents a sum of N point vortices centered at the
points x,, each of strength I',.

We shall assume that the strength and location of the
point vortices depends on time and we shall derive an
evolution equation for I;(#) and x, (7). If we insert (3) into
{1) we obtain

N

Lhs. =%

i=1

[r}axi(x) —Ix;-V6_(x)+ Iuix) -V&,‘,(x}],
(4)

N
rths.=v ) 1,48, (x), (3)

i=1

where &, :=4(x —x;). Here we denote by u; a suitable
reconstruction of the fluid velocity due to the point vortices.
It can be obtained either by a point-vortex method,

=3 IK(x;—x,),

e

(6)

or by a vortex-blob methed,

N
ui= > IK(x;—x), (7
j=1

where K, =K # g, is a “mollified” kernel and the cutoff
function g,(x)=1/e’g(x/e) is some smooth function with
certain regularity properties {3 ]. Other techniques that can
be used for the reconstruction of the velocity field at the
particle location include the method of local corrections [2]
and the vortex-in-cell method [12].

All these methods are extensively described in the context
of vortex methods for the Euler equations [ 3, 8]. In the next
section we shall briefly describe the techniques used in our
implementation. Our concern now is the derivation of the
evolution equations for the diffusive term. We therefore
assume that u; is a given functional of the position and of the
strength of the vortices.

The two sides, Lh.s. and r.h.s., cannot match as identities
in the d-function and its derivatives. This means that a
distribution of the form (3) cannot be a weak solution of
the Navier-Stokes equations. This is obvious because the
diffusion has the effect of spreading the point vortices. We
look instead for an approximate solution of Eq. (l). An
approximate matching of (4) and (5) is obtained by a
discrete approximation of the gradient and the Laplacian of
a o-function on an irregular grid.

This approximation is interpreted in the weak sense and
is obtained in the following way: let us introduce the bracket
¢, » that defines a distribution as a continuous linear
functional on a certain function space 2. Then we have,
Voe 2,

<5i’ ¢>=¢(i)’
{4y, ¢ =A(X).
Let us approximate the derivatives of the function ¢(x} in

X; by a linear combination of values of ¢(x) at the other
points of the set:

Ap(x) = 5, B 4(x)). ®)

The coeflicients f; are, of course, not uniquely defined and
depend on the particular discretization of the Laplacian.
They are functions of the positions of the points.
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From Eq. (8) and the definition of § it follows that
(43, ¢>=49(x;) =}, B,4(x))
i

~38,<5, )= ($8,8,.9).

i

Therefore the discrete approximation of the Laplacian of a
o-function is given by

Ad, (x) = E ﬁﬁéxj(x).

i
i

(9)

Let us make a brief digression on the relation between
particle methods and quadrature formulas. Suppose we
want to solve numerically the heat equation

o
a~y

on an irregular grid defined by a set of points §:=
{x,i=1,.., N}. We can discretize f(x, ¢) either using an
approximation of its values on the grid points,

.fi(t)zf(xis [))

or by giving the weights of a particle approximation of

S(x, 1),

N

Jix, = Z w (1) d(x —x,).

i=1

(10)

The relation between w; and f; is the following: let
{p;si=1,.., N} denote the weights of an accurate gquad-
rature formula whose nodes are the points {x;}; then the
following approximation holds:

[ 70 gxyax= T fx) ex) pix ¥ figx) p (1)

i=1 i=1

On the other hand, Eq. (10} implies

N

[ 700 gxyax= ¥ wigx,)

i=1

(12)

Comparing (11) to (12} it is natural to assume the relation
w,=p:f: (13)

The evolution equations for f; are then given by

J=LBs 15 (14)

while the evolution equations for w; are

W,-=Z W, B, (15)

that is, the system describing the evolution of the weights is
the dual of the one describing the evolution of the function.
Comparing (14) to (15) and making use of (13}, we obtain
the following relations between the weights of the quad-
rature formula and the coefficients of the discrete Laplacian:

Piﬁrj = pjﬁﬂ = Eija

where B',J =8 .. The weights p, have a geometrical meaning:
they are proportional to the area (volume in 3D) associated
to each point x;. If the points are uniformly distributed, as
in the case of a regular grid, then the weights are constant
and the matrix f; is symmetric. We will derive some specific
expressions for f§, and p, in the next section.

Let us return to the derivation of the evolution equations.
Using the approximation (%) in (5), it is possible to match
the expressions (4) and (5). The resulting evolution equa-
tions are:

X, =u’

i i

. {16)
I'i=v Z ﬂjil}'

Observe that the vortices are advected according to the
fluid velocity and their strength changes according to
diffusion. Note also that the (weak) consistency of the
approximation of the diffusion term is a consequence of the
consistency of the discrete approximation of the differential
operator.

This method can be extended to the 3D Navier-Stokes
equations. In this case w is a vector and the equations
become

6—w+(u-V)m=(a)-V)u+vAw.

Er (17)

The velocity fieid can be reconstructed from the vorticity. In
unbounded space, for example, we have

u(x, t)= J‘ K{x—x") - w(x’, t)dx’,

where the matrix K(x} is given by

0 =z
1

K(x): —W -z 0 X
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Let us look for an approximate solution of Eq. (17) of the
form

w™x, 1)= i L) o(x —x, (1)), (18)

where I'; are 3D vectors. A consistent scheme for the Euler
equations is obtained by a vortex-blob method, which is
obtamed by regularizing the kernel K with a smooth
function g.(x)=(1/e*) g{x/e) [3]. The velocity field is
therefore reconstructed according to

u'(x}= i K(x—x)-T;,

i=1

where K, = K * g, (x). Substituting (18} in {17) we obtain

N
Lhs.= Y [[,8(x—x;)+ T {a(x)—x;)
F=]

Vo{x —x;)],

rhs =3

i=1

[5(xx;)(r;~V)2Ka{x—x,~>

T, 4+vl,, Aé(x_x{)]. (20}

Approximating the Laplacian by (9} we can again match
Lh.s. and r.h.s., obtaining the evolution equations

X.:u‘.:,

i !

(21)
F= (T, MY Kx,—x)-T,+v¥ T,
i g

3. IMPLEMENTATION

In this section we describe the implementation of the
method for 2D problems in unbounded domain. We com-
pute the advection velocity u at the particle locations using
a vortex-blob method [287. We make use of the fast muiti-
pole method (FMM )} [ 23] for the evaluation of the sum (7).
For a point-vortex method, this reduces the computational
cost to O(N), with a constant that depends on the tolerance
required. In single precision the FMM is faster than the
direct evaluation for N larger than about 200.

To construct the discrete approximation of the Laplacian
we make use of the Voronoi diagram associated with the
particle positions. Given a set & of points in the plane, the
Voronoi diagram associates each point x; € % with a convex
polygon P, defined as

P={xeR*:|x—x,|<|{x—x;],Vx,e ¥ }.

Voronoi diagrams have been extensively used as a com-
putational tool in fluid dynamics calculations [ 19], as well
as for constructing triangulations used in finite element
methods [24] (see Fig. 1). Fast algorithms have been
developed for constructing these diagrams that make free
Lagrangian techniques more attractive and competitive
{31, 1]. In particular there are aigorithms that construct
Voronoi diagrams in O(Nlog N) operations [31] and
algorithms that are parallelizable [1].

The concept of a Voronoi diagram can be extended to any
number of dimensions and can be generalized in various
ways. A survey on Voronoi diagrams is given in [4].

We make use of algorithms for the construction of
Voronoi diagrams that have been implemented in portable
Fortran by Peskin and Borgers [6, 7]. These algorithms
compute the diagram in O({N *} operations, but update it in
only O(N) operations, under the assumption that the
topology of the diagram does not undergo dramatic change.
They are particularly suited for Lagrangian computations,
in which the number of points is constant and the positions
of the points change only slightly at each time step.

Voronoi diagrams can be used to construct discrete
approximations of differential operators. Starting from the
continuous relations:

L A¢ dx = LP %}é ds,

f V-udx:J u-nds,

P ap

Lw dx=LP¢un ds,

FIG. 1.

Vorenoi diagram associated with a distribution of points.
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one defines the discrete Laplacian, L, discrete divergence, D,
and discrete gradient, G, according to

A, Lg{x;)= Z lfj:frl g
L
Ut XX
A, )= —— =1, 22
!D“(xt) j;j 2 lXj_xiln ( )
A,-G¢(Xf)—j§£ 7 ',xj.—xfl v

where A, is the area of the polygon associated with point x,,
1,;1s the length of the edge corresponding to points X, and x;,
and ¢, .= ¢(x,).

From the definition of the discrete Laplacian it follows
that

i l,-j oy
e 3 JFL
A x|
I
- » J=1
Aik;ﬁlxk—xil

Note that §, = Eg/A,- with B',-j= B'J,-,- and A4, can be used as the
weight of a quadrature formula whose nodes are at the
particle location, in agreement with the discussion of the
previous section. Note also that the coefficients f; are
non-zero only if the points i and j are neighbors in the
diagram. Therefore the number of non-zero coefficients is
O{N). Once the diagram is constructed the contribution of
diffusion in Eqs. {16) can be evaluated in O(N) operations.

Initial conditions. The values of I'; and x, at time =0
are obtained from the initial conditions. There are several
techniques for obtaining the initial positions and strenghts
of the vortices [3]. We consider an initial value problem
w(x, 0} = wy(x), where wy(x) has (numericaily} compact
support. We distribute the points on a regular mesh of grid
size A and the initial values of I'; are given by

Ti=ag(x} b (24)
We place vortices with zero weight around the support of
wy, 0 order to take into account the spreading of the
numerical support of the vorticity. It would be desirable to
have an adaptive algorithm that adds new vortices when
needed and removes them where they are superfluous. An
adaptive scheme for the heat equation on a triangulated
mesh has been proposed in [32].

4. GENERAL PROPERTIES
In this section we shall consider some properties of the

method that are direct consequences of the properties of the
discrete Laplacian L.

Consistency. The discrete Laplactan L is weakly consis-
tent to first order with the continuous Laplacian 4, but it is
not pointwise consistent. This statement is proved in the
case of periodic boundary conditions in |6, 7].

Conservation of vorticity. The total vorticity [ :=
¥ , I, is conserved by scheme (16); from the expression

=1

for B, it follows that

d
E;rﬁﬂ;gﬁ,}nﬁ(;ﬁﬂ)r,.=o, as)

Energy stabitity. The energy of a solution of the discrete
diffusion equation on a Voronoi mesh can only decrease.
To show this, let us consider the systern (15), where the
coefficient f, are given by (23):

F'.-=Z ﬂﬂ'rj-
i
Let
r:
by
Then

g=zzrirjﬁjiﬂ4i<0
i

because the matrix f;/4, is negative definite. This statement
is proved in [30].

Angular moment. The main result of this section is the
proof that this scheme gives the exact evolution law for the
angular moment of the vorticity. This is an important result,
since it indicates that there is no spurious numerical
diffusion in the method, and therefore the scheme seems
suitable for shightly viscous flow.

We start by proving a remarkable property of the discrete
YLaplacian. For the continuous Laplacian the following
relation holds:

jﬂz x| dé{x) dx=4jR2 $(x) dx

for any arbitrary function ¢(x) e C*(R?) with compact sup-
port. The same property holds for the discrete Laplacian,
ie,

2 Ix1% Lg(x;) A;=43 $(x) 4;, (26)

where ¢(x) is an arbitrary function whose support does not
contain nodes of the diagram associated with polygons of
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infinite area and the * indicates that the sum is extended
only to points in the support of ¢. In order to prove Eq. {26}
we make use of the following lemma.

LEMMA 1. Let P, be a Voronoi polygon with finite area
Ay It then follows that

ad )

o= Y

j=1 ixj_xki

(%1 — %, 7) = 44, (27)

Proof. Let us perform a coordinate transformation,

X, =a+Z,

where a is a constant vector. Then

N

=3

j=1

z.—z i(2a'(zj_zk)+|zj|2_|zk|2)'
;T B

Let us choose a =x,. Then z, =0 and it follows that

N N
Ck=221}k j+z klZl

i=1 i=1
The first sum is zero, since it is the flux of the constant vector
a across the border of the polygon. Each term in the second
sum is equal to four times the area of the triangle with one
edge of length [, and the opposite vertex in x,. The sum
over j of the areas of such triangles is A, , therefore ¢, =4A4,.
Q.ED.

We are now able to prove the following.
TuroreM 1. Let ¢(x)e CXR?) and let us assume that

the support 2 of ¢ contains only points of & associated with
poelvgons of finite area. Then the following property holds:

Z!’KI Lé(x)) -—4Z¢(x (28)

Proof. From the definition of L,

M,: Z (x;1° Lo(x;) A
_ hd 2 (X, ) — ¢(x)
_,le"l ,E,. X, —x;] e
* 5 *
=§|xj| kgjlxj_x qu’( k)
~ * - |

By exchanging the order of summation and relabeling the
indices in the second sum one has

M;=Y é(x) Zl’ — (1%~ i)
& Frk

From Lemma 1 the proof follows. Q.ED.

A property of the Navier-Stokes equations is that the
second moment of the vorticity distribution is linear in time.
More precisely,

g Ix]? w(x, t) dx

2a):= [ 0(x, 1) dx

= #(0) + 4vr.

This property is maintained by the vortex scheme that we
propose. Let us define the discrete second moment as

L0 )x,{0)?
ey °

- (29)

r—l

and let us consider the system of Egs. {16), where a vortex-
blob method is used in the computation of the velocity,

_ul’

rFVZﬁﬁr;
j

(30)

The conservation property of the scheme is expressed by the
following.

THEOREM 2. For the scheme (30) the second moment
satisfies the relation

(1) =o(0) + dvr. (31

Proof. First we observe that from (25), I':=%%  Iis
constant. Then let us take the time derivative of a2,

N N
di=lz %, +%Z rx;-ut,

=1

(32)
From the second equation of (30) we have

N N
Y FxP=v Y x| Le(x) 4,

i=1 i=1

with ¢(x;}=I";/A,. From Theorem 1 it follows that

N

Y x| Le(x,)

i=1

N
A,=4 Y =4I

i=1

4,247 gix)

i=1
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therefore
N .
Z Lix P =4l (33)
i=1
We now prove that for a vortex-blob methed,
N
B:=% I'x;-u¢:=0 (34)
i=1

The velocity u® is given by
N
ui=3% K,(x,—x;) /.
i=1
Thereflore one finds
B= Z rr'[:fxi Ko (x,— xj)
i.f

zz FJF,XJ . Kc(xj*xi).
L

For a radially symmetric core (i) K, (x)= — K (—x}and (ii)
x -K,(x)=0. Making use of (i} we have

B= _Z Filx - Ko(x, —x,),

6j
and summing the first expression for B it follows that

B= %Z Frrj(xi_ x)-K(x,— xj)-
iy
By property (ii), each term in the summation is zero.
Substituting (33) and (34) in (32) it follows that

do?
4y,
7

which is equivalent to (31). Q.E.D.

Stability considerations. Explicit schemes for the solu-
tion of the diffusion equation on a Voronoi mesh suffer a
restriction on the time step due to stability conditions. In
our implementation we used a forward-Euler scheme in the
diffusion step. A sufficient condition for the stability is given
by [30]

2

max; 2 ;.; (14 Ai/Aj) ﬁu

This condition was obtained by application of the

vaAt<

Gershgorin theorem to the discrete Laplacian and is valid
also on a moving grid of points. When applied to the case
of a square grid it reduces to the well-kncown condition

vAargiht
5. NUMERICAL RESULTS
In this section we test the method by comparing the
numerical results with an  exact solution of the

Navier-Stokes equation. We consider an initial value
problem with

wolx, Yy =exp[ —12(x* + )]

The period of rotation of a particle at the origin is T'=4x.
We integrate the system up to time ¢, = 37. As a measure
of the error we consider the quantity

e (t)= max |ui{r) —u(x,, t)| ,

max |u{x,;, )|

where u}{?) is the numerical value of the velocity of particle
iand u(x,, 1) is the exact velocity. We use this norm because
the velocity is the physical quantity one wants to compute
and this type of error can be used both for vortex-blob
methods and for point-vortex methods. We do not use the
L, norm in the velocity error, since the velocity field is not
L, and the numerical evaluation of the error on a finite
domain would depend on the computational domain.

We use a Runge-Kutta scheme of fourth order for the
convection step, and a forward-Euler scheme for the
diffusion step. A step size of 47 =10.05 15 used throughout
all the calculations. Except when otherwise stated, we use a

+ N t

5 10 15 20 z5 30 35

FIG. 2. Dependence of the error on the viscosity. L, relative error in

the velocity as a function of time; £#=10.1, £ =49, with g=0.75. Viscosity:
v=0 (continuous line}, 10~* (short dash), 10~* (long dash}, 5x10~*
{dot-dash), 10-* (dot-dot—dash).
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a
o5t oo —— T
0.21
DSt e T e
1 —
9 . - ~ . P
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b

0.254

FIG. 3. Dependence of the error on the space discretization. L, relative error in the velocity as a function of time: #=0.2 (continuous line), 0.14
(short dash), 0.1 (long dash}, 0.07 (dot—dash); 4 =0.75. (a) Euler equations, (b) Viscosity v=5x 10"

vortex-blob method for the reconstruction of the velocity
field with a Gaussian cutoff function of fourth order,

1 1
=—{2p—IXF __ p—Ixl¥2}
g(x) n( e 5 €

The size of the core is related to the grid size by
g=h".

A detailed numerical study of the vortex-blob method for
the Euler equations is reported in [28]. We use a rather
small value of ¢, g =0.75, in most of our calculations. This
value is not optimal for short times, but it provides a rather
uniform accuracy over a few rotation periods for the Enler
equations.

We want to study the dependence of the error of the
method on the space discretization  and on the viscosity v.

In Fig. 2 we show the error as a function of time for
various values of the viscosity. The grid size is A=0.1. The

a
0.2t )
/
/
0.151 /
- /
LTS ;
e R ~_/
--------- a
0.1 4
--------------------- -~ ~ RIECS
e / ~ ~
Ve / -
0.05 e ya
————— - -/
~
+ + + — + + + t
5 10 15 20 25 30 35

fact that the error decreases with time is a consequence of
the large value of ¢. For a fixed k, the consistency error has
a minimum for an optimal value of &, which balances the
discretization error and the moment error [37. Because of
stability considerations, however, it is better to use cores
with a size larger than the optimal. This guarantees a
uniform accuracy over longer times. Due to diffusion, the
vorticity distribution spreads, and the relative size of the
core becomes smaller. This is the reason the error decreases.
This effect is not present when the point vortex method is
used (see Fig. 5). It is evident that the method behaves like
the vortex-blob method as the viscosity decreases to zero.
This is obviously an essential feature if the method is to be
useful for flows with small viscosity.

Figure 3a shows the error for the vortex-blob method
applied to the Euler equations, while Fig. 3b shows the
result of the present method with a viscosity v=0.0005.
During the simulation, the width of the vorticity distribu-
tion roughly doubles.

Figure 4 shows the result of the computation obtained

¢.075

0.025¢+

5 16 15 20 25 30 a5

FIG. 4. Dependence of the error on the space discretization. L, relative error in the velocity as a function of time: A= 0.2 {continuous line), 0.14
{short dash), 0.1 (long dash), 0.07 (dot—dash}; g =0.85. (a) Euler equations. (b) Viscosity v=75x 10~*

SB/108/1-7
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3 5 15 20 25 b 35
FIG. 5. Point vortex method. Dependence of the error on the
viscosity. I, telative error in the velocity as a function of time: 2=0.1.

Viscosity: 0 (continuous ine); 10~* (short dash); 5x 10~* (long dash);
10> (dot—dash).

with g = 0.85. As is evident, the main source of error is in the
convective term. For comparison, Fig. 5 shows the result of
a point-vortex method.

Comparison with the Random Vortex Method

We compare our method with the random vortex
method. The initial condition is computed according to
Eq. {24). During the time step 4t the circulation associated
with each vorte is unchanged.

Foliowing Roberts [30a], we compare the exact and
computed value of the relative second moment of the
vorticity distribution

e ixP o(x, 1) dx
2= I olx, )dx ’

which is given by

L(ty= F{0)+ 4ve.

— +

5 10 15 20 25 3Q 35

+ + $ + t
I 5 10 15 20 25 30 35

FIG. 6. Random vortex method. Angular moment vs time. Viscosity
v="5x 10" Straight line, exact solution.

In the numericali scheme #(¢) is approximated by the
quantity (29)

N

In Fig. 6 we show the exact and computed values of #(1).
The angular moment computed with the random vortex
method fluctuates around the exact vaiue. The fluctuations
decrease as the number of vortices increases. The deter-
ministic scheme that we propose gives the exact evolution
law for the angular moment; therefore the result is
indistinguishable from the exact solution. In Fig. 7 we show
the L, relative error in the vorticity distribution for the ran-

b

5 10 15 20 25 30 35

FIG. 7. L, relative error in the vorticity for different values of A: h=0.2 (continuous line); 0.14 (short dash); 0.1 (long dash); 0.07 (dot—dash).
Viscosity v=5x 10~* {a) Random vortex method. {b) Deterministic method.
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FIG. 8. L relative error in the velocity as a function of time: A=0.1,
v =0 (continuous line), 10~ (short dash), 5x 10~* (long dash), 103
(dot—dash).

dom vortex method and for the deterministic schemes. This
indicator is probably not very good for determining the
accuracy of the random vortex method. The random
fluctuations are so large that the improvement with the
increasing resolution is not evident. The use of e, gives even
worse results, In Fig. 8 we show the dependence of e, on
different values of the viscosity. From the comparison of
this figure with Fig. 2, it is evident that the proposed
deterministic scheme is far more accurate than the random
vortex method.

Timing

In Table I we report the time used by the different parts
of the program in a typical calculation. The computation
was performed with a SUN sparc 2.

The diffusion step includes the computation and updating
of the Voronoi diagram. Most of the time is spent in the
computation of the velocity field. The time spent in the diffu-
sion step is a negligible fraction of the total computation
fime.

TABLE 1

Partial and Total Computation Times (Seconds)

Number of vortices 177 349 09 1425
Velocity field 0.39 096 2.29 6.26
Diffusion step 0.077 0.165 0.387 0.95

Convection step 1.62 394 9.49 259

Time/step 1.62 4.16 1041 29.8
Total diffusion time 58 182 474 1190
Total convection time 1149 2973 7156 19560
Total time 1120 3136 7877 22594

6. CONCLUSIONS

We propose a new deterministic vortex method for the
solution of the incompressible Navier-Stokes equations.
The method is based on the discretization of the Laplacian
on a Voronoi grid, whose nodes are at the vortex locations.
The position of the vortices is updated according to the
velocity, which is reconstructed from the vorticity via a
vortex-blob method. The circulation associated to the
vortices satisfies a diffusion equation discretized on the
Voronoi mesh.

The conservation properties of the method are a direct
consequence of the conservation properties of the vortex-
blob schemes and of the discrete Laplacian on a Voronoi
mesh, In particular this method preserves exactly the total
circulation and gives the exact evolution law for the second
moment of the vorticity distribution. Numerical tests show
that the discretization error due to the diffusion algorithm is
negligible compared to the error introduced by the
discretization of the Biot—Savart law. The time spent in the
diffusion step is much smaller than the time required for the
computation of the velocity.

The stability restriction (4) is not very severe for slightly
viscous flow. lmplicit schemes for the solution of the
diffusion equation on a Voronoi mesh are presently under
investigation.

In a practical implementation it would be desirable to
make the code adaptive, by implementing creation and
annihilation of vortices. We are presently considering this
possibility.

We plan to compare this scheme with other methods,
such as a spectral method, for the computation of slightly
viscous flow in a periodic domain.
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